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Abstract In this paper, we theoretically prove that the

Gaussian quantum discord state of optical field can be used

to complete continuous variable (CV) quantum key distri-

bution (QKD). The calculation shows that secret key can be

distilled with a Gaussian quantum discord state against

entangling cloner attack. Secret key rate is increased with

the increasing of quantum discord for CV QKD with the

Gaussian quantum discord state. Although the calculated

results point out that secret key rate using the Gaussian

quantum discord state is lower than that using squeezed

state and coherent state at the same energy level, we

demonstrate that the Gaussian quantum discord, which

only involving quantum correlation without the existence

of entanglement, may provide a new resource for realizing

CV QKD.

Keywords Quantum information � Quantum key

distribution � Quantum discord � Continuous variable

1 Introduction

Quantum correlation, which is measured by quantum dis-

cord [1–3], is a fundamental resource for quantum infor-

mation processing tasks. It has been shown that some

quantum computational tasks based on a single qubit can

be carried out by separable (that is, non-entangled) states

that nonetheless carries non-classical correlations [4–6].

Recently, quantum discord is extended to two-mode

Gaussian states [7, 8]. A two-mode Gaussian state is

entangled with Gaussian quantum discord D [ 1, when

0 B D B 1 we have either separable or entangled states.

Gaussian quantum discord has been experimentally dem-

onstrated too [9–11].

Quantum key distribution (QKD) allows two legitimate

parties, Alice and Bob who are linked by a quantum

channel and an authenticated classical channel, to establish

the secret key only known by themselves. Continuous

variable (CV) QKD using Gaussian quantum resource

state, such as entangled state, squeezed state, and coherent

state, as the resource state, along with reconciliation and

privacy amplification procedure to distill the secret key

[12]. There are two types of QKD schemes, one is called

prepare-and-measure scheme, the other is entanglement-

based scheme. The equivalence between these two type CV

QKD schemes has been proved. QKD with coherent state

(squeezed state) has been proved to be equivalent to het-

erodyning (homodyning) one of the two entangled modes

of an Einstein–Podolsky–Rosen (EPR) entangled state

[13]. Generally, the entanglement-based QKD model is

used to investigate the security of CV QKD. The security

of CV QKD scheme has been analyzed [14–16], and it has

been proved to be unconditionally secure, that is, secure

against arbitrary attacks over long distance [17, 18].

Recently, a CV QKD scheme with thermal states is also

proposed and proved to be secure against collective

Gaussian attacks [19].

Very recently, it has been shown that quantum discord

can be used as a resource for QKD in general [20]. What

we concerned is the role of Gaussian quantum discord in

CV QKD. In this paper, we apply a two-mode Gaussian

discord state, where only quantum correlation exists and

without entanglement, to implement CV QKD. The cal-

culation shows that the secret key can be distilled with the
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two-mode Gaussian discord state against entangling cloner

attack, which is the most important and practical example

of collective Gaussian attack. The secret key rate of the

QKD scheme with Gaussian discord state is increased with

the increasing of the quantum discord. The secret key rates

of the CV QKD schemes with the Gaussian discord state,

squeezed state and coherent state (no-switching QKD) are

compared. Although squeezed state and coherent state offer

higher secret key rate than the Gaussian discord state, we

demonstrate the Gaussian discord can be used to establish

secret key.

2 The Gaussian discord state and QKD scheme

The QKD scheme with a two-mode Gaussian quantum

discord state and entangled state is shown in Fig. 1. Fig-

ure 1a shows a two-mode Gaussian discord state, as shown

in [9], which is prepared by correlated (anti-correlated)

displacement of two coherent states in the amplitude

(phase) quadrature with a discording noise V. Figure 1b

shows an EPR entangled state with a variance

VE ¼ cosh 2r, where r 2 ½0;1Þ is the squeezing parameter.

The amplitude and phase quadratures of an optical mode â

are defined as X̂a ¼ âþ ây and Ŷa ¼ ðâ� âyÞ=i, respec-

tively. The variances of amplitude and phase quadratures

for a vacuum (coherent) state are VðX̂vÞ ¼ VðŶvÞ ¼ 1: The

covariance matrix of the two-mode Gaussian quantum

resource state in Fig. 1a, b is given by

r ¼ aI cZ
cZ bI

� �
; ð1Þ

where I and Z are the Pauli matrices

I ¼ 1 0

0 1

� �
; Z ¼ 1 0

0 �1

� �
; ð2Þ

a = b = VD = V ? 1, c = V for the two-mode Gaussian

discord state and a ¼ b ¼ VE; c ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2

E � 1
p

for the EPR

entangled state, respectively.

Quantum discord is defined as the difference between

two quantum analogs of classically equivalent expression

of the mutual information. The Gaussian quantum discord

of a two-mode Gaussian state is given by [8]

DAB ¼ f ð
ffiffiffiffi
I2

p
Þ � f ðm�Þ � f ðmþÞ þ f ð

ffiffiffiffiffiffiffiffiffi
Emin
p

Þ; ð3Þ

where f ðxÞ ¼ ðxþ1
2
Þ log xþ1

2
� ðx�1

2
Þ log x�1

2
;

m� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 � 4 det r
p

2

s
; ð4Þ

are the symplectic eigenvalues of a two-mode covariance

matrix r ¼ A C
C B

� �
with det r as the determinant of

covariance matrix and D ¼ det Aþ det Bþ 2 det C; and

Emin ¼
2I2

3
þðI2�1ÞðI4�I1Þþ2jI3j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I2
3
þðI2�1ÞðI4�I1Þ

p
ðI2�1Þ2

I1I2�I2
3
þI4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
I4
3
þðI4�I1I2Þ2�2I2

3
ðI4þI1I2Þ

p
2I2

8><
>: ð5Þ

where the first equation applies if ðI4 � I1I2Þ2� I2
3ðI2 þ

1ÞðI1 þ I4Þ and the second equation applies otherwise. I1 ¼
det A; I2 ¼ det B; I3 ¼ det C; I4 ¼ det r are the symplectic

invariants.

PPT criterion is a necessary and sufficient criterion for

entanglement of Gaussian state [21, 22]. A Gaussian state

is entangled if ~m�\1, where ~m� is the smallest symplectic

eigenvalue of partial transposed covariance matrix for two-

mode Gaussian state, which is given by [23, 24]

~m� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
~D2 � 4 det r

p
2

s
; ð6Þ

where ~D ¼ det Aþ det B� 2 det C:

Based on the covariance matrix in Eq. (1) for the

Gaussian discord state, we calculated the quantum discord

and smallest symplectic eigenvalue of PPT criterion, which

are shown in Fig. 2. As shown in Fig. 2a, the quantum

discord is increased dramatically with the increasing of

input variance VD in the region of VD 2 ½1; 100�: When

VD [ 100, the quantum discord increased slowly with the

increasing of VD. The smallest quantum discord is 0.12 at

VD = 1. The quantum discord is always smaller than 1. In

Fig. 2b, the smallest symplectic eigenvalue of partial

transposed covariance matrix is always 1, which means that

there is no entanglement in the Gaussian discord state.

Figure 1c shows the CV QKD scheme with a two-mode

Gaussian state as quantum resource state, which can be the

(c)
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Fig. 1 Schematic of the CV QKD scheme with a two-mode Gaussian

state. a The two-mode Gaussian discord state, AM amplitude

modulator, PM phase modulator, p p phase shift; b EPR entangled

state; c the CV QKD scheme. The transmission efficiency of quantum

channel is modeled by a beam splitter with transmission T. Eve

performs entangling cloner attack, where the variance of the ancillary

EPR state is W. Hom homodyne detection, Het heterodyne detection
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two-mode Gaussian discord state or the EPR entangled

state. Alice hold mode â, and transmitted mode b̂ to Bob

over the quantum channel. Here, we consider that Alice

and Bob perform homodyne (Hom) or heterodyne (Het)

detection on their own beam, which corresponds to the CV

QKD scheme with homodyne or heterodyne detection. We

assume that Eve perform entangling cloner attack [13],

which is the most important and practical example of a

collective Gaussian attack [17, 25–27], to steal the infor-

mation. She prepares an ancillary EPR entangled states

with variance W, which corresponds to the excess noise

d = W - 1 in [28] and � ¼ ðW � 1Þð1� TÞ=T in [13].

W = 1 means there is no excess noise (d = 0) in the

channel, when W [ 1, there is excess noise (d = W - 1)

in the channel. She keeps one mode Ê00 and mixed the other

mode Ê with the transmitted mode b̂ in the quantum

channel by a beam splitter, leading to the output mode Ê0.
Eve’s output modes are stored in a quantum memory and

detected collectively at the end of the protocol. Eve’s final

measurement is optimized based on Alice and Bob’s

classical communication. After communication is com-

pleted, Alice and Bob perform reconciliation, error cor-

rection [29, 30] and privacy amplification [31] to distill

final secret key.

3 Security of the CV QKD scheme

3.1 Homodyne detection

In the CV QKD scheme with homodyne detection, Alice

and Bob perform homodyne detection on their own beams

to measure the amplitude or phase quadrature, respectively.

For CV QKD with EPR entangled state, homodyning one

of the entangled beam is equivalent to the CV QKD with

squeezed state. So we will compare the Gaussian discord

state QKD with squeezed state QKD in this section. In the

following, we use the variable X to represent amplitude or

phase quadrature of an optical mode to analyze the secret

key without losing the generality.

3.1.1 Direct reconciliation

In direct reconciliation, Bob attempts to guess what Alice

sent. The secret key rate is given by

KDR ¼ IðXA: XBÞ � IðXA: EÞ; ð7Þ

where

IðXA: XBÞ ¼ HðXBÞ � HðXBjXAÞ; ð8Þ

is the mutual information between Alice and Bob, with

H(XB) = (1/2)log2V(XB) and H(XB|XA) = (1/2)log2V(XB|XA)

being the total and conditional Shannon entropies. Eve’s

information is

IðXA: EÞ ¼ SðEÞ � SðEjXAÞ; ð9Þ

where Sð�Þ is the von Neumann entropy. The von Neumann

entropy of a Gaussian state q can be expressed in terms of

its symplectic eigenvalues [32]

SðqÞ ¼
Xn

k¼1

gðmkÞ; ð10Þ

with gðmÞ ¼ 1
2

mþ 1ð Þ log2½12 mþ 1ð Þ� � 1
2

m� 1ð Þ log2½12 m� 1ð Þ�;
where m ¼ fm1; :::mng are the symplectic eigenvalues of

Gaussian state q. The symplectic spectrum m ¼ fm1; :::mng
of an arbitrary correlation matrix r can be calculated by

(a) (b)

Fig. 2 Quantum discord (a) and smallest symplectic eigenvalue of PPT criterion (b) for the Gaussian discord state
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finding the (standard) eigenvalues of the matrix iXrj j,
where X defines the symplectic form and is given by [12]

X ¼a
n

k¼1

0 1

�1 0

� �
: ð11Þ

Here a is the direct sum indicating adding matrices on the

block diagonal.

In Fig. 1c, the covariance matrix of the two-mode

Gaussian state distributed between Alice and Bob in the

CV QKD is given by

rAB ¼
VAI c0Z
c0Z VBI

� �
; ð12Þ

where VA ¼ VE; VB ¼ TVE þ ð1� TÞW ; c0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðV2

E � 1Þ
p

for the EPR entangled state and VA ¼ VD; VB ¼ TVD þ ð1�
TÞW ; c0 ¼

ffiffiffiffi
T
p

V for the Gaussian discord state, respectively.

The conditional variance is defined as [33] VXjY ¼
VðXÞ � XYh ij j2=VðYÞ: So Bob’s conditional variance in

homodyne detection is given by

VBjA ¼ VB �
c02

VA

: ð13Þ

The mutual information between Alice and Bob is

IHomðXA: XBÞ ¼ 1
2

log2½VB=VBjA�; which is same for the

direct and reverse reconciliation.

Eve’s covariance matrix is made up from the modes Ê0

and Ê00; which is

rE ¼
evI uZ
uZ WI

� �
; ð14Þ

where ev ¼ ð1� TÞVA þ TW ; u ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TðW2 � 1Þ

p
:

In order to obtain S(E|XA) we need to calculate the

symplectic spectrum of the conditional covariance matrix

rEjXA
, which represents the covariance matrix of Eve’s

system where mode â has been measured by Alice using

homodyne detection and is given by [12, 34, 35]

rEjXA
¼ rE � ðVAÞ�1DPDT; ð15Þ

where

P ¼ 1 0

0 0

� �
; ð16Þ

and D is the matrix describing the quantum correlations

between Eve’ modes and Alice’s mode, which is given by

D ¼ XE�XAh iI
XE00XAh iZ

� �
¼ fI

gZ

� �
; ð17Þ

where f ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
1� T
p

VA; g ¼ 0:

3.1.2 Reverse reconciliation

The 3 dB loss limit on the transmission line in the CV

QKD [36] can be beaten with the reverse reconciliation

[37, 38] or the post-selection [39]. In reverse reconciliation,

Alice attempts to guess what was received by Bob rather

than Bob guessing what was sent by Alice [37]. Such a

reverse reconciliation protocol gives Alice an advantage

over a potential eavesdropper Eve. In reverse reconcilia-

tion, the secret key rate is

KRR ¼ IðXA: XBÞ � IðXB: EÞ; ð18Þ

where the mutual information between Alice and Bob

I(XA:XB) is same with what obtained above.

Eve’s information is given by

IðXB: EÞ ¼ SðEÞ � SðEjXBÞ: ð19Þ

The conditional covariance matrix rEjXB
, which

represents the covariance matrix of a system where one

of the modes has been measured by homodyne detection

(in this case Bob), is given by [12, 34, 35]

rEjXB
¼ rE � ðVBÞ�1DPDT: ð20Þ

Here D is the matrix describing the quantum correlations

between Eve’ modes and Bob’s mode, which is given by

D ¼ XE0XBh iI
XE00XBh iZ

� �
¼ f0I

g0Z

� �
; ð21Þ

where

f0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Tð1� TÞ

p
ðW � VAÞ; g0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� TÞðW2 � 1Þ

p
:

Figure 3 shows the secret key rate of the CV QKD scheme

with homodyne detection, (a) and (b) are corresponding to

the direct and reverse reconciliation, respectively. Solid and

dashed lines are the secret key rates for the Gaussian discord

state with variance VD=40 (typical experimental realistic

modulation level [37]) and 1000, respectively. Dotted line is

the secret key rate for the squeezed state with variance

VE=40. All curves are plotted with excess noise W = 1.

Comparing the solid and dotted lines in Fig. 3, it is obvious

that secret key rate for squeezed state is greater than that for

Gaussian discord state at the same energy level in both direct

and reverse reconciliation. Comparing solid and dashed

lines, we find that the secret key rate is increased with the

increasing of the discording noise for the CV QKD with the

Gaussian discord state with homodyne detection in both

direct and reverse reconciliation.

3.2 Heterodyne detection

In the CV QKD scheme with heterodyne detection, Alice

and Bob perform heterodyne detection to measure the
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amplitude and phase quadratures of their own beams

simultaneously. Since heterodyning one of EPR entangled

state is equivalent to QKD with coherent state. In this

section, we will compare the Gaussian discord state QKD

with no-switching coherent state QKD [40].

In heterodyne detection system, a vacuum mode m̂ is

mixed with the optical mode â (b̂) on a balanced beam

splitter and the output modes are measured by two homo-

dyne detectors respectively. The amplitude quadrature

measured by Alice and Bob are X̂M
A ¼ ðX̂a þ X̂mÞ=

ffiffiffi
2
p

and

X̂M
B ¼ ðX̂B þ X̂mÞ=

ffiffiffi
2
p

, respectively. The corresponding

noise variance measured by Alice and Bob are

VA
M = (VA ? 1)/2 and VB

M = (VB ? 1)/2, respectively.

Bob’s conditional variance is given by VBM jAM ¼
ðVBjAM þ 1Þ=2; where

VBjAM ¼ VB �
c02=2

VM
A

: ð22Þ

The mutual information between Alice and Bob are

IHetðXA: XBÞ ¼ log2½VBM=VBM jAM �, which is same for the

direct and reverse reconciliation.

3.2.1 Direct reconciliation

In order to obtain S(E|XB) we need to calculate the sym-

plectic spectrum of the conditional covariance matrix

rEjX̂A;ŶA
; which represents the covariance matrix of a sys-

tem where two modes has been measured by heterodyne

detection (in this case Alice), is given by [12, 34, 35]

rEjX̂A;ŶA
¼ rE � ðKÞ�1DðXrAXT þ IÞDT; ð23Þ

(a)

(b)

Fig. 3 Secret key rates for the CV QKD schemes with homodyne

detection. a The direct reconciliation; b the reverse reconciliation.

Solid and dashed lines are the secret key rates for the Gaussian

discord state with variance VD = 40 and 1000, respectively. Dotted

line is the secret key rate for the entangled state with VE = 40. All

curves are plotted with excess noise W = 1

(a)

(b)

Fig. 4 Secret key rates for the CV QKD schemes with heterodyne

detection. a The direct reconciliation; b the reverse reconciliation.

Solid and dashed lines are the secret key rates for the Gaussian

discord state with VD = 40 and 1000, respectively. Dotted line is the

secret key rate for the entangled state with VE = 40. All curves are

plotted with excess noise W = 1
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where K ¼ det rA þ TrrA þ 1;XrAXT þ I ¼ rA þ I; and

D is given by Eq. (18).

3.2.2 Reverse reconciliation

The correlation matrix rEjX̂B;ŶB
; which represents the

covariance matrix of a system where two modes has been

measured by heterodyne detection (in this case Bob), is

given by [12, 34, 35]

rEjX̂B;ŶB
¼ rE � ðK0Þ�1DðXrBXT þ IÞDT; ð24Þ

where K0 ¼ det rB þ TrrB þ 1;XrBXT þ I ¼ rB þ I; and

the matrix D is same with Eq. (22), which describing the

quantum correlations between Eve’s modes and Bob’s

mode.

Figure 4 shows the secret key rates for the CV QKD

schemes with heterodyne detection, (a) and (b) are for the

direct and reverse reconciliation, respectively. Solid and

dashed lines are the secret key rates for the Gaussian dis-

cord state with VD = 40 and 1000, respectively. Dotted

line is the secret key rate for the entangled state with

VE = 40. All curves are plotted with excess noise W = 1.

In Fig. 4a, comparing solid and dotted lines, we find that

secret key can be distilled for the Gaussian discord state at

lower transmission efficiency than that for coherent state

with heterodyne detection. When T [ 0.78, secret key rate

for coherent state is still higher than that for the Gaussian

discord state with heterodyne detection. In Fig. 4b, com-

paring solid and dotted lines, it is obvious that no-switching

coherent state QKD offers higher secret key rate and longer

transmission distance than that the Gaussian discord state

QKD. We also noticed that no secret key can be distilled

for the Gaussian discord state at lower transmission effi-

ciency (T \ 0.55) with reverse reconciliation, which is

different from coherent state QKD. Comparing solid and

(b)(a)

(c) (d)

Fig. 5 The dependence of secret key rates on quantum discord for the CV QKD schemes with the Gaussian discord state. a, b The direct and

reverse reconciliation for homodyne detection, respectively; c, d the direct and reverse reconciliation for heterodyne detection, respectively.

Solid, dashed, and dotted lines are the secret key rates for the Gaussian discord state with transmission efficiency of 0.75, 0.8, and 0.9,

respectively. Dash-dotted line in b is the secret key rate for the Gaussian discord state with transmission efficiency of 0.3. All curves are plotted

with excess noise W ¼ 1;VD 2 ½1; 1000�
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dashed lines in Fig. 4a, b, respectively, we find that secret

key rate is increased with increasing of the discording noise

for both direct and reverse reconciliation in CV QKD with

the Gaussian quantum discord state, which is same with the

result of homodyne detection.

4 Dependence of secret key rate on quantum discord

As shown in Fig. 5, the dependence of secret key rate for

the Gaussian discord state on quantum discord are inves-

tigated at different transmission efficiency with input var-

iance VD 2 ½1; 1000�: Figure 5a, b is the case of direct and

reverse reconciliation for homodyne detection, respec-

tively. Figure 5c, d is the case of direct and reverse rec-

onciliation for heterodyne detection, respectively. It is

obvious that secret key rate is monotonically increased

with the increasing of quantum discord. Solid, dashed and

dotted lines are the secret key rates for the Gaussian dis-

cord state with transmission efficiency of 0.75, 0.8 and 0.9,

respectively. Dash-dotted line in Fig. 5b is the secret key

rate for the Gaussian discord state with transmission effi-

ciency of 0.3, which means that secret key can be distilled

when T \ 0.5 in reverse reconciliation for homodyne

detection. Comparing these traces, we find that secret key

rate is increased with the increasing of transmission effi-

ciency, which is same with the result in Figs. 3 and 4. Most

of the secret key rates start from DAB = 0.12, since 0.12 is

the smallest quantum discord with VD = 1 as shown in

Fig. 2a. When T = 0.75 (solid line) in Fig. 5c, secret key

can be distilled when DAB [ 0.22.

5 Conclusion

In this paper, by considering CV QKD with a two-mode

Gaussian discord state, which has only quantum correlation

and without entanglement, we show that secret key can be

distilled against entangling cloner attack. In CV QKD with

the Gaussian discord state, the secret key rate is increased

with increasing of quantum discord in both homodyne and

heterodyne detection schemes with direct and reverse rec-

onciliation. By comparing the secret key rates of CV QKD

schemes with the Gaussian discord state, squeezed state and

coherent state, we find that squeezed state and coherent state

offer higher secret key rate than the Gaussian discord state at

the same energy level for both direct and reverse reconcili-

ation. This is a natural result since Gaussian discord of the

Gaussian discord state (0 B D B 1) is smaller than that of

EPR entangled state (D [ 1). This work provides a possible

application of Gaussian quantum discord.
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